The modern automatic transmission consists of many components and systems that are designed to work together in a symphony of clever mechanical, hydraulic and electrical technology that has evolved over the years into what many mechanically inclined individuals consider to be an art form. We try to use simple, generic explanations where possible to describe these systems but, due to the complexity of some of these components, you may have to use some mental gymnastics to visualize their operation.
The main components that make up an automatic transmission include:
- Planetary Gear Sets that are the mechanical systems that provide the various forward gear ratios as well as reverse.
- The Hydraulic System that uses a special transmission fluid sent under pressure by an Oil Pump through the Valve Body to control the Clutches and the Bands in order to control the planetary gear sets.
- Seals and Gaskets are used to keep the oil where it is supposed to be and prevent it from leaking out.
- The Torque Converter that acts like a clutch to allow the vehicle to come to a stop in gear while the engine is still running.
- The Governor and the Modulator or Throttle Cable that monitor speed and throttle position in order to determine when to shift.
- On newer vehicles, the Computer that directs electrical solenoids to shift oil flow to the appropriate component at the right instant controls shift points.
Planetary Gear Sets
Automatic transmissions contain many gears in various combinations. In a manual transmission, gears slide along shafts as you move the shift lever from one position to another, engaging various sized gears as required in order to provide the correct gear ratio. In an automatic transmission, however, the gears are never physically moved and are always engaged to the same gears. This is accomplished through the use of planetary gear sets.
The basic planetary gear set consists of a sun gear, a ring gear and two or more planet gears, all remaining in constant mesh. The planet gears are connected to each other through a common carrier, which allows the gears to spin on shafts called
“pinions” which are attached to the carrier.
One example of a way that this system can be used is by connecting the ring gear to the input shaft coming from the engine, connecting the planet carrier to the output shaft, and locking the sun gear so that it can’t move. In this scenario, when we turn the ring gear, the planets will “walk” along the sun gear (which is held stationary) causing the planet carrier to turn the output shaft in the same direction as the input shaft but at a slower speed causing gear reduction (similar to a car in first gear).
If we unlock the sun gear and lock any two elements together, this will cause all three elements to turn at the same speed so that the output shaft will turn at the same rate of speed as the input shaft. This is like a car that is in third or high gear. Another way that we can use a Planetary gear set is by locking the planet carrier from moving, then applying power to the ring gear which will cause the sun gear to turn in the opposite direction giving us reverse gear.
The illustration on the right shows how the simple system described above would look in an actual
transmission. The input shaft is connected to the ring gear (Blue); The Output shaft is connected to the planet carrier (Green), which is also connected to a “Multi-disk” clutch pack. The sun gear is connected to a drum (yellow), which is also connected to the other half of the clutch pack. Surrounding the outside of the drum is a band (red) that can be tightened around the drum when required to prevent the drum with the attached sun gear from turning.
The clutch pack is used, in this instance, to lock the planet carrier with the sun gear forcing both to turn at the same speed. If both the clutch pack and the band were released, the system would be in neutral. Turning the input shaft would turn the planet gears against the sun gear, but since nothing is holding the sun gear, it will just spin free and have no effect on the output shaft. To place the unit in first gear, the band is applied to hold the sun gear from moving. To shift from first to high gear, the band is released and the clutch is applied causing the output shaft to turn at the same speed as the input shaft.
Many more combinations are possible using two or more planetary sets connected in various ways to provide the different forward speeds and reverse that are found in modern automatic transmissions.
Some of the clever gear arrangements found in four and now, five, six and even seven and eight-speed automatics are complex enough to make a technically astute lay person’s head spin trying to understand the flow of power through the transmission as it shifts from first gear through top gear while the vehicle accelerates to highway speed. On modern vehicles (mid ’80s to the present), the vehicle’s computer monitors and controls these shifts so that they are almost imperceptible.